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Isotopic spin and coherent states 
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Institute of Theoretical Physics, Fack, S-402 23 Goteborg 5 ,  Sweden 

Received 10 August 1978 

Abstract. We review the concept of coherent states and extend the concept to a basis which 
transforms irreducibly under isotopic spin rotations. The construction is explicitly given for 
one-mode wavefunctions. The construction of a similar basis for fields can in principle be 
done by making use of the results in the present paper. 

1. Introduction 

The concept of coherent states was introduced by Schrodinger (1926) to study, in the 
coordinate representation, the minimum-uncertainty wavefunction of harmonic oscil- 
lators. Coherent state techniques are now widely employed in various branches of 
theoretical physics, and they can justify the study of classical equations of motion in 
quantum mechanics and quantum field theory (Hepp 1974, Klauder 1977, Perelomov 
1977). 

In the case of the electromagnetic field the coherent states, as discussed by Glauber 
(1963) and later developed in greater detail by others (Hepp 1974, Chung 1965, Rocca 
and Sirgue 1968, Kibble 1968, Roepstorft 1970), have been used, for example, in the 
study of optical coherence (Kiauder and Sudarshan 1968). The infrared behaviour of 
scattering amplitudes in quantum electrodynamics has also been studied in terms of 
coherent states (Eriksson 1970 and references therein), and they are also useful when 
considering self-interacting boson fields (Hepp 1974, Eriksson and Skagerstam 1978). 

Because of their useful properties many attempts have been made to generalise the 
concept of coherent states (for a general discussion see Bacry etal 1975). In Bhaumik et 
a1 (1976) it was noted that an extension to a situation in which an Abelian charge is 
involved is straightforward, and a complete basis of generalised coherent states in which 
the charge operator is diagonal can be constructed. The extension to field theory was 
discussed in Skagerstam (1978b), where the results were applied to the emission of soft 
charged pions from a ‘classical’ current. 

At present accelerator energies the average number of particles produced is large, 
and therefore it might be useful to express the scattering operator in terms of 
generalised coherent states. In strong-interaction physics the charges involved are, 
however, non-Abelian in character (e.g. isospin). In Botke etal (1974) an attempt was 
made to construct coherent states for which the appropriate isospin operators can also 
be diagonalised. The pion field density operator was shown to take a simple form in the 
corresponding coherent states. A general framework for describing high-energy pion 
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production has therefore been obtained. In Botke etal( l974)  the isospin was, however, 
treated as a global variable, i.e. all pions were assigned the same momentum-space 
wavefunction. In the present paper we will give a similar construction for coherent 
states with definite isospin. We will restrict ourselves to one degree of freedom. The 
field theoretical case can be treated by using the methods in the present paper. We will 
return to this case elsewhere with a discussion of physical applications. 

The states constructed in the present paper can, for example, be used in a 
semiclassical study of particles with isospin (see e.g. Arodz, 1978). These states can also 
be characterised uniquely by a minimal-dispersion relation, as is the case for con- 
ventional coherent states (Skagerstam 1978). 

Our intention is to present the material in a self-contained manner. We cannot 
therefore avoid a repetition of the properties of conventional coherent states. 

2. Fock space and isotopic spin 

In what follows we give a short review of the one-mode Fock space construction with 
the corresponding representation of isotopic spin algebra. We introduce annihilation 
and creation operators 

(1) a = (a19 az, a3), a+  = ( U ; ,  a;, a ; ) ,  

with commutation relations 

[a ,  a1 = 0, [ a + ,  a'] = 0, [ai, ai+] = 6.. 11' 

We also introduce number operators 
N .  I =a+,. I I ,  

with commutation relations 

[NI ,  N I ]  = 0, [NI, a,]  = -611a1, [NI, a;l=6, Val + ' (4) 

N = NI + N2 + N3 = U * .  U 

The total number operator 

( 5 )  

ill) 
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and complete, 

Ini, n2, n3)(ni, nz, nsl = 1. 

The effect of the annihilation and creation operators is as follows: 
nl.nz.nj 

a h ,  n2, n3) = Jnllnl- 1, n2,  n3>, (13) 
Instead of the modes tied to the 1- and 2-directions we could equally well have used 
modes tied to the complex (*)-directions: 

a:Inl, n2, n3> = Jn1+ 1lnl+ 1, n2, n3>. 

The isospin operators are 

with commutation relations, obtainable from (2), 

The squared isospin vector is 

I ~ =  N ~ + N - A + A ,  (17) 
where N is the number operator ( 5 )  and 

A = a .  a = a0a0+2a+a- ,  A + = a t . a + = a ~ a ~ + 2 a + a - .  + +  (18) 

A and A' satisfy the commutation relations 

[I, AI  = 0, [N, A]  = -2A, 

[I, A+] = 0, [N, A+] = 2A' 
and 

[ai, A'] = 2a7, 
[A, a'] = 2ai, 

] [A,A']=4N+6. 

From the commutation relations (16) it can now be shown that the spherical harmonics 
Y f ,  (a)+,  defined as homogeneous Zth degree polynomials in appendix 1, transform 
irreducibly under finite isospin rotations 

(21) 
R = e-i@.I 

according to 

R+Y!,,(u)+R+ =D!, ,~ . (R)Y~, , (Q)+ 

(summation over repeated indices is to be understood), where Df, . , (R)  is the rotation 
matrix of the (21 + 1)-dimensional irreducible representation of the rotation group. 

Thus 

Yf,(U)+IO) 
is an eigenstate of I 2  and 13: 
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One way of proving the first relation (24) is to use (17) and the fact that for all l, m 

[A,  Yi (a)']IO> = 0. (25) 

3. Coherent states 

The conventional coherent states are defined in terms of one-particle wavefunctions f 
by 

I f )  = U(f)lOL (26) 

where U ( f )  is the unitary operator 
a+.f-f*.a -:f*.f a+., -f*.a U(f) = e = e  e e  

with the properties 

and 
U(f +g) (28) 

[a, Uif)l = fU(f), [a+ ,  U(!)]= -f" U(f).  (29) 
From (28) and (29) it follows that the coherent states are normalised eigenstates of the 
annihilation operator 

(flf) = 1, aIf)=flf). (30) 

The scalar product between two coherent states is easily obtained from the listed 
properties of the operator Uif), 

, (31) 

U ( f ) U ( g )  = e- : ( i* .~-~*.r)  Wf)' = U(f)-' = U(-f), 

( g l f )  = e-:(f*.B-B*." e - - t ' f -BIz  

where the first factor is a phase factor. Thus coherent states are never orthogonal. 
The number operator of the mode described by the wavefunction f is 

Nf= ( U + . f ) ( f * .  u)/f* .f.  (32) 
In the coherent state I f )  corresponding to this mode it has the expectation value 

(flNflf) = f* f* 
The eigenstates of N,, 

(33) 

are 

In terms of these I f )  has the expansion 

n f = O  dinf! 
(36) 

(37) 

Thus 

i.e. we have a Poisson distribution. 
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The expansion of I f )  in terms of the Fock basis (8 )  is 

n3=O 

implying that 

i.e. we have independent Poisson distributions of the three modes. 

completeness relation 
The coherent states form an over-complete basis. From (38) one easily shows the 

1 = J d6fIfi(fl, 

where the measure is 

1 3 

j = 1  
d2fi = - d Re{fi} d Im{f;}. 

7r 
d 6 f  = n d2fi, 

In terms of the basis 

(no, n+, n-> = (no!n+!n-!)-"2(a,')nO(a=)n+(a~)n-IO) (42) 

derived from the representation (14), the expansion of a coherent statelf) is (in analogy 
with (38)) 

where 
f* = ( f l 7  if2)lJZ. 

The corresponding particle distribution is 
(44) 

The inverted relation corresponding to (43) is 

4. Isospin and number operator basis 

We can now use the fact that A' creates a pair in an isosinglet (see e.g. equation (19)) 
and introduce states which are eigenstates of I* and I3 as well as of the total number 
operator ( 5 ) :  
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Here is a normalisation constant, 

N;" = ( 0 1 ~ ;  (u )A" (A+)"Y~  ( u ) + ~ o ) ,  (49)  
which is easily evaluated by means of equations (20) ,  (A1.6)  and (A1.7) .  Inserting the 
result into (47)  we have 

A similar construction was recently discussed in Bartnik and Rzaiewski (1977).  If (50) 
is expressed in the basis (42) ,  which are already eigenstates of N and 4, then we have 
the constraints 

1+2n =no+n++n- ,  m =n+-n- .  (51) 
The expansion coefficients can be read from equations (47) ,  (48)  and (A1.2)  as 

( n  +1)!(21+ l ) ! ( l + m ) ! ( l - m ) ! ( 1 + 2 n  - m  - 2 k ) ! ( m  + k ) ! k ! n !  
(2n + 21 + l ) !  

(53) 

and 

The inverted relation (52) is 

5. Isospin decomposition of coherent states 

We now wish to relate I f )  and 11, m ;  1+2n) to each other, i.e. to make an isospin 
decomposition of If). Starting from the definition of I f ) ,  (26)  and (27) ,  

ea+ lo), (56)  

Y!., (f)  Y!., (a)+lO). 

If) = ,-1 f* . f  

if) = e-' f*.f  1 & ( ( f . f ) A + )  

we can now use (A1.9) to achieve such a decomposition: 
m 

(57)  
/ = 0  m = - 1  

Using (50) and (Al .  10) we obtain the result 
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The inverse of this relation is 

11, m ; I + 2 n )  

The probabilities connected to the expansion (58) are 

The following partial sums are of interest: 

2'(n + I ) !  
(2n + 21 + l ) ! n  ! 

- .r - 

To obtain (63)  we used 

2'(n + I ) !  1 (bl(Zlf o f 1 7  

z n + l  
I f . f l 2 "  =-f dz 

(2n  + 21 + l ) ! n  ! 2 r i  

in (61),  where the contour C encloses z = 0. We also summed over I and applied 
(Al . l l ) .  

We can sum (63)  over n or we can sum (64)  over 1 using (Al. l l)  to obtain 

From ( 5 8 )  we can now extract eigenstates of 12, 13 and A which, however, are not 
eigenstates of the total number operator 
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A completeness relation for the generalised coherent states (67) can be derived (see 
appendix 2), 

where 

Q f ( X )  = ~ , ( X 2 ) k f ( X ) X f ”  (73) 

and k f ( e )  is a spherical modified Bessel function. The relation (72) has a very c!ose 
analogy to the completeness relation for coherent states with an Abelian charge 
(Bhaumik et af 1976, Skagerstam 1978b). As discussed in appendix 3, a projection 
technique similar to the one discussed in Bhaumik eta1 (1976) and Skagerstam (1978b) 
can be constructed by means of which the state (67) can be obtained from coherent 
states I f )  by a suitable integration over the group manifold. We obtain 

where C ( f )  is given by 

~ ( f i  = e-’r.’(~f(lf.fl))-1(~:,(f)/(2[+ I ) ” ~ ) .  (75) 

The states (67) can furthermore easily be related to the coherent states defined by 
equation (56): 

f 

i f>=e-ip.’f  (4f(r* . ~ f . f ) ) - ~ ’ ~  ~ k ( f 1 1 f . f ;  I, m).  (76) 
1 =o m=-f  

Finally we compute the overlap of two generalised coherent states (67) using (71) and 
(A 1.10): 

(77) ( 5 ;  1, m k ’ ;  jf, m f )  = s1f,sm,,~r(5*5’)/(~f(1512)~f(15f12))1’2. 
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Appendix 1. Spherical harmonics 

For our purposes it will be convenient to introduce spherical harmonics as homo- 
geneous polynomials of the components of a unit vector (the expression A1.2 can be 
derived by making use of a Laplace integral for associated Legendre polynomials 
(MacRobert (1948)): 

(Al . l )  

and 

Ylm(e)= ( -1)"~f , (e)*,  

where 

e ,  = (el * iez)/JZ, eo = e3. 

The normalisation is such that 

(A1.3) 

(A1.4) 

I do ,  Yk,  (e)* Y!,, (e) = SII,S,,.. (A1.5) 

The polynomials (A1.2) for given 1 may be written in terms of the 21 + 1 completely 
symmetric traceless Ith-rank tensors t f ,  as 

(A1.6) 

4T 

Yf,(e) = (l/~!)(t!n)jl...j,ejl . . ej,, 

and it follows from (A1.5) that 

(1/1!)(tf,) ~ . . .  j~(t!n,)jl...j,= [(21+ 1)!/2'1!Iamm,* 
Since Y f, (e) are homogeneous polynomials of degree 1, 

(A1.7) 

yf, (ce) = cry! , ,  (e), (A1.8) 

(A1.2), (A1.3) or (A1.6) can be used to define spherical harmonics for a vector of 
arbitrary length. 

The following expansion theorem will prove to be useful, 
CO I 

e'.*= 1 41(k2x2) ~ ! , , ( k ) * ~ f , ( x )  
1=0 m=-I 

where d/ is defined in terms of a spherical Bessel function j / ,  

jl(-iJX) ( n + l ) !  
d l ( X )  = - -2' - X n .  

(JXy ,=0(2n+21+l)!n! 

As a special instance of (A1.9) we have 
m 

/ = 0  
ex' = 1 (21+ 1)x141(xz)Pl(y). 

(A1.9) 

(A1.lO) 

(Al.11) 
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Appendix 2. Completeness relation for the generalised coherent states 

We give the proof of the completeness relation (72) .  kl(lrl) is a modified spherical 
Bessel function 

(A2.1) 

We obtain 

Appendix 3. Projection of generalised coherent states 

Let I denote the angular momentum operator and define the Wigner D-functions by 
(Wigner 1959) 

(A3.1) &,(e) = (1, m'le-i'*el/, m ) .  

We then have the relations 

and 
Y f ,  (0,O) = S , 0 ( 2 1 +  1p2, 

(A3.2) 

(A3.3) 

where (a, P,  y )  are Euler angles of rotation. The D-functions obey the orthogonality 
relation 

(A3.4) 

(A3.5) 

(A3.6) 
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where we have used the relation 

= S,~.Smm.Smv3(21 + 1 y 2 .  (A3.7) 

Now relations (50), (A3.3) and (67) can be used in (A3.6), and we finally obtain 

(A3.8) 

which is an eigenstate of A, I 2  and 13. 
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